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Time step bias improvement in diffusion Monte Carlo simulations
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A Makri-Miller approximation to the exact propagator and the improved split-operator propagator proposed
by Drozdov are implemented within the diffusion Monte Carlo method for the simulation of boson systems,
and confronted with the Trotter formula and with the importance sampling technique. As a preliminary ap-
proach, we compute analytically the time step bias of the mean energy for the different propagators in the
simple case of the harmonic oscillator. These results indicate the improved split-operator propagator as the
most accurate. Simulations on one- and three-dimensional model systems confirm the analytical results show-
ing that this propagator is very efficient in reducing the time step bias, therefore improving the efficiency of the
algorithm.

PACS number~s!: 02.70.Lq, 5.30.Jp
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I. INTRODUCTION

The diffusion Monte Carlo~DMC! method is a useful too
to study both ground and excited states of many body s
tems. At first, it was employed to solve the Schro¨dinger
equation for electronic systems, i.e., to compute the e
tronic energy and structure of atoms and molecules@1#, and
later to study the nuclear wave function of large atomic a
molecular aggregates@2#. Among the main advantages th
method offers are the ability to easily cope, at least in pr
ciple, with any kind of interaction potential without the n
cessity to tailor the computer code, and the possibility
avoid the basis set expansion. Moreover, the computati
effort grows slowly with the increase of the dimensional
of the problem unlike methods based on linear combina
of basis functions@1#.

Although these features make the DMC method appea
the method of choice for all problems where correlation
tween motions plays a fundamental role in describing c
rectly the physics of a system, its use has been hindere
its statistical nature and by the necessity to reduce the st
tical error to compute accurate energy differences. The m
frequently employed approach to reduce the statistical e
of the DMC results is the importance sampling~IS! method
@3#, where an approximate trial wave function is used
guide the Monte Carlo sampling by means of a generali
Metropolis scheme based on Langevin dynamics@4#. Al-
though this method has been found to reduce dramatic
the statistical error for equal number of sampled configu
tions when employed in simulating the electronic structure
molecules, it requires more computational time for ea
simulation step and the selection and optimization of the t
function. This last step might become computationally m
expensive than the DMC itself, therefore reducing the ove
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advantage of the IS procedure. Nevertheless, once one h
optimized trial function, IS-DMC can be efficiently used
compute the mean energies and properties using diffe
time steps in order to eliminate the time step bias. Moreov
when the IS method is coupled with an accept-reject s
based on the approximate trial wave function, the time s
bias is usually reduced. Since this and related methods
well described in the literature, we refer the reader to th
publications for further details@4#.

Another indirect and less walked path to the reduction
the statistical error is given by the time step bias impro
ment that a more accurate propagator can produce@5#. This
reduction of the time step bias has many advantages
respect to the simple IS: it allows us to use larger time ste
therefore improving the statistical accuracy of the results
alternatively, reducing the computational cost for the e
trapolation. This is usually obtained because the impro
propagator has a leading term in the error whose order in
time step is higher than the less accurate one, and a sm
prefactor in this leading term. Furthermore, it does not
quire a trial wave function as IS does, freeing ourselves fr
the burden to define complex and highly optimized tr
wave functions to guide the simulation and to compute
mean energy by the mixed estimator, since different estim
tors can be used. This can be advantageous when observ
different from the energy are required. In this way one wou
not introduce any prior information in the simulation, ther
fore avoiding to bias the sampled distributions@6#.

In this work we follow this alternative to the IS techniqu
to reduce the time step bias, examining different propaga
that have been proposed and implementing them in D
simulations of model systems. The outline of this paper f
lows. Section II presents the analytical form of the propa
tors we compared in this work, and a summary of the a
lytical results for their time step bias of the mean energy
the harmonic oscillator case. In Sec. III we show the num
cal energy results for three model systems and report a
cussion of the relative efficiency of the propagators. Fina
2050 ©2000 The American Physical Society



ur

C

n
nt
he
e
th
om

o
ug
o
n

or
ti
si
t o
-

lo
pr
tin

ly
s
M
xi
ro

w,
al

the
an
rt

ob-
by

the

a

e

n

ra-
ls

olu-
ial
ise
m-
in

t
two

ht

an
eless,
e
m-
eed

ed

ma-

if-
the
to

PRE 61 2051TIME STEP BIAS IMPROVEMENT IN DIFFUSION . . .
Sec. IV contains our conclusions and proposal for fut
work in this direction.

II. METHOD

A. Theory of propagators in diffusion Monte Carlo

An imaginary-time version of the Schro¨dinger equation
serves as starting point to develop the theory of the DM
methods. Specifically, this reads

]C~R,t !

]t
5(

i

¹ i
2

2mi
C~R,t !2V~R!C~R,t !, ~1!

whereV(R) is the interaction potential, andR is a point in
three-dimensional~3D! space.

Although we leave the analytical form of the interactio
potential undefined as a way to stress the ability of Mo
Carlo to cope with any local potential, we point out that t
quality, accuracy, and stability of the method strongly d
pend on the specific potential. For instance, although all
propagators we tested can be employed to simulate Coul
systems, their simulations might become unstable due
population blow up since this potential in atomic and m
lecular systems is not bound from below. Therefore, we s
gest to intend our work as aimed to improve the efficiency
the DMC simulations for systems whose potential is bou
from below ~e.g., atomic clusters!.

For the nodeless function case we consider in this w
~i.e., we restrict ourselves to particles obeying Bose’s sta
tics!, the previous equation is formally equivalent to a clas
diffusion process with sink and source terms dependen
the position in space. Equation~1! can be recast in the inte
gral form

C~R8,t1t!5E dR G~R→R8,t !C~R,t!, ~2!

where G(R→R8,t)5^R8ue2tHuR& is the imaginary time
Green’s function. If this function were known, Monte Car
methods could be used to estimate the above integral,
jecting out all the excited state components from the star
wave functionC(R,0) @4#.

Unfortunately, the exact Green’s function is known on
for very simple model Hamiltonians. For systems who
ground state wave function has no nodes, the theory of D
relies completely on the ability to find an accurate appro
mation to the imaginary time Green’s function of the Sch¨-
dinger equation. The usual short time approximation~STA!
to this function is given by the Trotter~T! formula @7#

GSTA
T ~R→R8,t !5)

i
S mi

2pt D
3/2

expFmi~r i82r i !
2

2t G
3expF2t

V~R!1V~R8!

2 G ~3!

that is supposed to be accurate to a second order int, i.e., for
short time steps the error is proportional tot2. This is true for
the harmonic oscillator, as we will show analytically belo
but it does not appear to be correct for a general potenti
e
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During the last few years, attention has been paid to
issue of finding more accurate and more efficient STA’s th
this function, in order to reduce the computational effo
needed for a given statistical accuracy. To tackle this pr
lem two different approaches have been used: the first
Makri and Miller @8# and the second by Suzuki@9#, Chin
@10#, and Drozdov@11#.

In the first approach, Makri and Miller~MM ! @8# ex-
panded the logarithm of the coordinate representation of
exact Green’s function as a power series int of the form

G~R→R8,t !5t23N/2expF2t21(
n50

tnWn~R8!G , ~4!

where N is the total number of particles, and theWn(R8)
were obtained exploiting the fact that the propagator is
solution of the imaginary-time Schro¨dinger equation. If the
power series is truncated ton52, one obtains the short-tim
approximation

GSTA
MM ~R→R8,t !5)

i
S mi

2pt D
3/2

expFmi~r i82r i !
2

2t G
3expF2tE

0

1

dj V@R1j~R82R!#G , ~5!

whereR5(r1 , . . . ,rN). This approximation has been show
to be more accurate than theT one@Eq. ~3!#, but the presence
of the integrals over the straight motion path of a configu
tion limits the possibility to use it to those forms of potentia
whose integrals are analytically solvable. One possible s
tion to this problem might be to fit the interaction potent
by means of spline functions: since these are piece-w
polynomial functions, all the requested integrals can be co
puted analytically allowing the use of this approximation
the simulations.

Comparing the MM form andT formula, it appears tha
the second can be derived from the first by means of a
point approximation to the integral indj, specifically
*0

1dj V@R1j(R82R)#.@V(R)1V(R8)#/2. This fact sug-
gests the idea that one might improve theT propagator em-
ploying more points in the integral in Eq.~5! or, alterna-
tively, a piecewise approximation of the potential by straig
lines. The accuracy of these approximations to Eq.~5! could
be improved also by choosing better integration rules th
the one used above, e.g., Gaussian quadrature. Neverth
it is important to keep in mind that the efficiency of th
simulation is an important issue: so the use of a larger nu
ber of integration points can reduce the computational sp
of the code.

A different approach from the MM one has been pursu
by Suzuki@9#, Chin @10#, and Drozdov@11#, employing the
split-operator techniques. They proposed various approxi
tions of the exponential operatore2tH, factorizing the kinetic
energy and potential components of the Hamiltonian in d
ferent ways than Trotter. Among the proposed formulas,
one suggested by Drozdov~D! @11# seems to be the easiest
implement in a DMC simulation. This formula reads



dy
rd

a
r,
w
e
nc

n

am

o
v
gy
th
th

te
ha
t

m

le
on

u
n
th
m
tic
r.

ite
ate

, or
the
har-

the

ery

ned

one
of

e
ti-

rent
tep

nic
ant
ted

ergy

s
, it
to

his
op-
me
his

ta-
en
ver-
m-
en a

2052 PRE 61MASSIMO MELLA, GABRIELE MOROSI, AND DARIO BRESSANINI
GSTA
D ~R→R8,t !5expF2t

V~R!1V~R8!

6 G
3E dR9)

i
S mi

pt D
3/2

3expFmi~r i82r i9!2

t Gexp@2tṼ~R9!#

3S mi

pt D
3/2

expFmi~r i92r i !
2

t G , ~6!

where

Ṽ~R!5
2V~R!

3
1

t2

72 (
i

@¹ iV~R!#2

mi
. ~7!

This factorization of the evolution operator was alrea
shown to be an improvement with respect to the standaT
formula at least in path-integral simulations@11#, where it
allowed one to use longer time steps still giving an accur
representation of the propagated wave function. Howeve
has never been tested directly in a DMC calculation, so
decided to implement this propagator to compute mean
ergies and other observables in order to test its performa

As pointed out by Drozdov@11#, differently from T and
MM formulas, theD approximation requires the computatio
of an integral over the intermediate pointR9. In the DMC
simulation, this can be easily carried out by a Gaussian s
pling of the displacement fromR to R9, therefore it requires
a double number of normal Gaussian variates. Since the m
expensive step in the DMC calculation, when no trial wa
function is used, is the evaluation of the potential ener
this additional request does not spoil the efficiency of
algorithm. Instead, care must be used in programming
calculation of the gradient of the potential, since this s
could become quite expensive. In Appendix A we show t
for a two-body potentialV(r i j ) this additional step does no
introduce any significant cost in the simulation.

As the last propagator formula, we report the one e
ployed in the standard IS-DMC algorithm that reads@3#

GSTA
IS ~R→R8,t !

5)
i

S mi

2pt D
3/2

expFmi@r i82r i2tFi~R!/~2mi !#
2

2t G
3expF2t

Eloc~R!1Eloc~R8!

2 G , ~8!

whereEloc5HC t /C t , andFi5¹C t /C t . Differently from
the previous formulas, that in the long time regime samp
distribution proportional to the ground state wave functi
C0, the IS propagator samples the distributionf 5C tC0. As
already pointed out in the Introduction, this formula is us
ally coupled to an accept or reject step based on the ge
alized Metropolis acceptance matrix. Before we show
results obtained by the above propagators in real DMC si
lations, in the next paragraph we present some analy
results for a simple model system: the harmonic oscillato
te
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B. Theoretical results for the harmonic oscillator

The harmonic oscillator system is one of the favor
playgrounds of chemists and physicists to test approxim
methods before applying them to more complex models
even real systems. In this work we analytically studied
accuracy of the proposed propagators employing the
monic oscillator as a test case. This choice is based on
observation made by Lee and Lee@12# that the propagation
of a GaussianC(R,0)5e2ax2

by means of Eq.~2! leaves its
analytical form unchanged, and only modifies the widtha in
a way that depends on the time stept used. This fact allows
us to get a better understanding of the features of ev
propagator, especially of the one used by Drozdov@11# that
represents the most promising one. Exploiting the mentio
result, one can solve the eigenvalue equation

C~R8,t !5elE dR GSTA~R→R8,t !C~R,0!, ~9!

where the parametert is the time step used,l the eigenvalue,
and the exact Green’s function has been substituted by
of its short time approximations. The ground state solution
Eq. ~9! of the formC(x)5e2a(t)x2

can be used to comput
various quantities~e.g., the mean energy and potential es
mator! whose values will also depend ont. Therefore, from
these results one is able to judge the accuracy of the diffe
approximations, i.e., the time step bias, varying the time s
in the simulation.

Before presenting our analytical results for the harmo
oscillator with unitary mass and force constant, it is relev
to point out that the energy mean values were calcula
employing both the mixed estimator@13#

^EH~ t !&5

E C0~R!He2cx2
dR

E C0~R!e2cx2
dR

~10!

and the mean potential estimator@1#

^EV~ t !&5

E C0~R!V~R!dR

E C0~R!dR
~11!

and that these quantities converge to the ground state en
for t→0. In Eq.~10! e2cx2

is the trial function, whose width
parameter isc. Although the mean potential estimator wa
the first estimator of the energy used in DMC calculations
is no longer employed in simulating Coulomb systems due
its larger variance with respect to the mixed estimator. T
is due to the fact that the mixed estimator has the nice pr
erty that it gives the exact energy, independently of the ti
step used, when the trial wave function is the exact one. T
property is reflected in the well-known reduction of the s
tistical error of the simulation when the difference betwe
the trial wave function and the exact one decreases. Ne
theless, the potential estimator is widely employed to co
pute mean energies for atomic and molecular clusters wh
trial wave function is not at hand@14#, so we feel it is worth



xe
t

y.
th

ac
p

-
.

es
s
th

s o

u

ac
io

o
la
p

u-
the
the
tors.
tity

ng

ing
r is

e
any
nc-
ch
ain

not
for
ure
ef-

me
nted
al

onic
one
al-
re-
le-
al
rs,

r
ting
in

g
c-
alid

the
cted
es
nted
re-
-
t

s a
s,

PRE 61 2053TIME STEP BIAS IMPROVEMENT IN DIFFUSION . . .
studying its time step bias as well as the one of the mi
estimator. Another interesting quantity that we were able
compute is the variance of these estimators, i.e.,^E(t)2&
2^E(t)&2, that is directly related to the algorithm efficienc
To avoid to burden this theoretical presentation we report
variance for the different propagators in Appendix B.

Using T @Eq. ~3!#, one obtains

^EH~ t !&5
11c~41t2!1/2

4c1~41t2!1/2
.1/21

2c21

16~112c!
t2, ~12!

^EV~ t !&5
1

~41t2!1/2
.1/22

t2

16
, ~13!

where, fort→0, both quantities converge towards the ex
value 1/2. It is interesting to note that for small time ste
these two mean values are accurate to second order int, i.e.,
the error is proportional tot2. This fact contradicts the find
ings of Makri and Miller@8#, at least for this model system

As far as the MM@8# approximation@Eq. ~5!# is con-
cerned, our analytical results are

^EH~ t !&5
31c~3613t2!1/2

12c1~3613t2!1/2
.1/21

2c21

48~112c!
t2,

~14!

^EV~ t !&5
~3!1/2

~121t2!1/2
.1/22

t2

48
. ~15!

Both T and MM formulas are correct to second order int, but
with better prefactor for MM. Since the MM approach do
not appear to be easy to implement for a general clas
potentials and does not introduce a large improvement in
time step bias, we decided to avoid to carry out more test
it.

With regard to the D formula, we obtained

^EH~ t !&5
3~121t2!1/21c~432136t21t4!1/2

12c~121t2!1/21~432136t21t4!1/2

.1/21
2c21

1728~112c!
t4, ~16!

^EV~ t !&5
3~121t2!1/2

~432136t21t4!1/2
.1/22

t4

1728
, ~17!

where both the energy estimators are dependent on the fo
power of the time step. Moreover, the coefficients oft4 are
two orders of magnitude smaller than thet2 coefficients for
the other approximations: this formula could give more
curate results, using the same time step, than the prev
approximations.

Since the IS-DMC method samples the distributionf
5C tC0 instead ofC0, the mean potential estimator is n
longer valid to compute the mean energy during the simu
tion. For the IS propagator, where no accept or reject ste
employed, the mixed estimator gives the result
d
o

e

t
s

of
e
n

rth

-
us

-
is

^EH~ t !&5
2114c3t2c~428ct1t2!1/2

24c14c2t2~428ct1t2!1/2
.1/21S c

2
2c2D t,

~18!

wherec is the width of the Gaussian used to guide the sim
lation and to compute the mean energy. The error of
mixed estimator for IS-DMC has a linear dependence on
time step, a much worse result than the previous propaga
Unfortunately, we were not able to obtain the same quan
for the IS algorithm coupled to the accept or reject step.

A different method to introduce the importance sampli
in the DMC simulations was developed by Kalos@13#, and it
is based on a simple reweighting scheme of the branch
factor. Specifically, the branching factor of the propagato
multiplied by C t(R8)/C t(R), whereR8 andR are, respec-
tively, the final and initial positions of a walker in a Mont
Carlo step. This approach can be easily employed for
analytical propagator once one has a suitable trial wave fu
tion to guide the simulation. Using an analytical approa
similar to the one explained above, we were able to obt
the time step dependence of the mixed estimatorEH(t) for
the T, MM, and D formulas when employed with this IS
procedure. It was surprising to see that these results do
differ from the ones obtained without the IS procedures
all the propagators: this way to carry out the IS proced
does not modify either the order of the algorithm or its pr
actor.

III. MONTE CARLO RESULTS AND DISCUSSION

The aim of this section is to report and discuss the ti
step bias and the efficiency of the propagators prese
above when applied to the simulation of low dimension
model systems. As the first test model we chose a harm
oscillator with the same mass and force constant as the
we employed in our analytical calculations. This choice
lows us to compare our simulations with the analytical
sults directly, in order to test the correctness of the imp
mentation of all the algorithms. In all the numeric
simulations we employed a target population of 500 walke
and a Gaussian trial wave function with width parametec
50.801 to compute the mean energy. Instead of repor
long tables with the numerical results of our calculations,
Fig. 1 we show the DMC mean potential estimator@Eq. ~11!#
for the T and D formulas, together with the correspondin
analytical solutions. Since for the IS algorithm with the a
cept or reject step the potential estimator is no longer a v
energy estimator, we do not compare its results with theD
andT ones.

From Fig. 1 one can note that theD approximation to the
exact propagator gives much better results, in terms of
time step bias, than the standard Trotter formula as expe
from the analytical results. Moreover, the numerical valu
appear in complete agreement with the equations prese
in the previous section. More specifically, the potential
sults obtained using theD formula are in statistical agree
ment with the exact value of 0.5 Hartree already at
50.95 Hartree21. A similar behavior was found for the
mixed estimator as shown in Fig. 2. This estimator allow
more fair comparison of the time step bias of the algorithm
as also IS results can be confronted withT and D values.
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From Fig. 2 it can be seen that the IS algorithm is less
curate than the Trotter formula even if accept or rejec
employed in the simulation. The results of theD formula for
the mixed estimator show a large improvement in the ti
step bias with respect to the standardT formula.

As a second example, we tested the three propagator
a unitary mass particle confined in the one-dimensio
double-well potential

V~x!5
x4

4
22x2, ~19!

a prototypical system widely employed to model the tun
effect. This model system, whose exact ground state en
is 22.6614 Hartree@15#, was used by Drozdov to test theD
formula in path integral calculations@11#. All the simulations
on this model system were carried out using the same ta
population as for the harmonic oscillator case, i.e., 500 wa
ers. As a trial wave function to compute the mean energy

FIG. 1. Time step dependence of the mean potential estimato
the energyEV(t) for the harmonic oscillator. The symbols represe
the results of DMC simulations, while the lines are the analyti
results shown in the text.

FIG. 2. Time step dependence of the mixed estimator of
energyEH(t) for the harmonic oscillator. The symbols represent
results of DMC simulations, while the lines are the analytical
sults shown in the text.
c-
s

e

on
l

l
gy
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-
e

used the sum of two Gaussians centered on the pote
minima xm562 and whose width parameter wasc51.41.
The mean potential results for this system are shown in F
3, together with the exact energy. From the plot, it appe
clearly that theD propagator is quite more accurate than t
T one, showing practically no time step bias up
0.25 Hartree21. As far as the mixed estimator is concerne
we show in Fig. 4 the numerical results of our simulation
Again, as noted previously for the harmonic oscillator, bo
T and D formulas appear much more accurate than the
algorithm, whose simulations become unstable for time st
larger than 0.04 Hartree21.

As a last test on time step bias of the mixed energy e
mator for the three propagators, we simulated the gro
state of a unitary mass particle in a 3D potential

V~x,y,z!5
¹2f ~x,y,z!

2 f ~x,y,z!
2

b2

2B
1a1b, ~20!

of
t
l

e

-

FIG. 3. Time step dependence of the mean potential estimato
the energyEV(t) for the double well potential. The symbols repr
sent the results of DMC simulations, while the line is the ex
energy.

FIG. 4. Time step dependence of the mixed estimator of
energyEH(t) for the double well potential. The symbols represe
the results of DMC simulations, while the line is the exact ener
Note the logarithmic scale on the time step axis.
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f ~z,y,z!5
e2ax22by2

e2az3
1Bebz

, ~21!

where f (x,y,z) is the ground state wave function, andE0
52b2/2B1a1b is its energy. In our simulations we as
sumeda50.3, b50.2, a50.7, b51.2, andB53.0: the ex-
act energy of this system isE050.26 Hartree.

As pointed out in the Introduction, to carry out the sim
lations for systems of physical interest and more comp
than the monodimensional models we have presented so
the IS-DMC method is frequently used. For this reason,
for having a fair comparison between the efficiency of theT
andD propagators with the IS-DMC algorithm, we decide
to run all the simulations on our 3D model using the
weighting scheme proposed by Kalos@13# to introduce the
importance sampling. As trial wave function to guide t
simulations we usedf (z,y,z) employing slightly different
parameter values than the exact ones. The mean local en
results of these simulations, where we employed 3000 w
ers, are shown in Fig. 5 together with theE0 energy.

As far as theD and T propagators are concerned, on
again the results show theD formula to give more accurat
results than theT one. Comparing the mean energy results
these two propagators with the values obtained employ
the standard IS-DMC method, one can notice that for t
system the last method gives even less accurate results
the simpleT propagator. Moreover, we were not able to ca
out simulations using a time step larger than 0.4 Hartre21

for the IS-DMC method due to systematic explosions of
walker population. We attribute this to an instability of th
branching factor based on the local energy of the trial w
function. This shows a strong divergency to large nega
values forz→6` for all the parameter values we tried. Th
D and T propagators are not affected by this feature sin
their branching factor is dependent only on the potential
ergy and its gradient. Since these quantities are bound f
below they cannot produce a population explosion as in
local energy case.

As already pointed out in the Introduction, more accur
propagators give the possibility to use larger time steps d

FIG. 5. Time step dependence of the mixed estimator of
energyEH(t) for the 3D model potential. The symbols represent
results of DMC simulations, while the line is the exact energy.
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ing the simulation. This fact leads to a dramatic decrease
the statistical error of the results, due to a faster decorrela
of the configurations between two successive steps. This
turn, allows one to reduce the length of the simulations o
obtain more accurate results for the constant simula
length.

To discuss the relative efficiency of the propagators,
show in Fig. 6 the standard deviation of the mixed estima
of the energy, obtained from the simulations on the
model potential presented above, versus the time step u
All the simulations were carried out employing 3000 wal
ers, 200 blocks of 500 steps each, so that the statistical e
is a direct mesure of the efficiency. The statistical error of
D propagator is similar to the one ofT in the time step range
0 – 0.5 Hartree21; for larger time steps it increases slight
with respect toT. We attribute this feature to the presence
the branching factor of a term depending ont3 that starts to
play an increasing role fort>0.5 Hartree21.

The T and D propagators appears to be much more e
cient than the IS-DMC algorithm for all the studied tim
steps, showing a statistical error smaller by a factor of 2
We feel this trait is due to the different branching factor
the propagators, since, using the same time step, the d
sion factor of the IS-DMC algorithm generates larger a
cepted displacements than the other propagators. The ga
the overall efficiency of the simulations can be easily und
stood recalling that the standard deviation of the results
proportional to (Nind)

21/2, whereNind is the number of sta-
tistically decorrelated samples obtained during a simulati
This means that a decrease of a factor of 2 in the stand
deviation represents an increase of a factor of 4 inNind , or a
decrease of a factor of 4 in the computational time for
same statistical accuracy.

In comparing more accurately the efficiency of theT and
D propagators, one should keep in mind that a step of thD
propagator is slightly more expensive than a step of thT
propagator. This is due to the necessity of a double num
of random variates to produce the diffusion displaceme
and of three calculations of the potential energy and one
its gradient instead of only two potential evaluations. The
fore, the singleD propagator step is roughly one and on
half times more expensive, since the generation of the r

e FIG. 6. Time step dependence of the standard deviation of
mixed estimator of the energyEH(t) for the 3D model potential.
The symbols represent the results of DMC simulations.
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dom variates is usually two orders of magnitude faster t
the calculation of the potential energy. Nevertheless, the p
sibility of using time steps in theD propagator larger by a
factor of 2–3 than in theT propagator obtaining the sam
time step bias more than supersedes the additional comp
tional cost request by this algorithm, and makes attractive
use for more complex systems. For instance, the same
step error, namely, 0.001 Hartree, is obtained using a t
step of 0.05 Hartree21 with T and of 0.30 Hartree21 with D
~see Fig. 5!. This fact reflects itself in a standard deviatio
for theD result that is 2.5 times smaller than the same qu
tity for T, therefore allowing to reduce the simulation leng
by a factor of 6. These conclusions remain similar even
the harmonic oscillator and for the double well potential.

IV. CONCLUSIONS

The main goal of this work was to compare the accura
and the efficiency of two proposed propagators with resp
to the Trotter formula commonly used in DMC simulation
atomic and molecular aggregates. From the results we
tained, it appears that the propagator based on the fo
order symmetric splitting proposed by Chin@10#, and ex-
ploited by Drozdov@11# in path integral calculations, allow
one to use a larger time step than the Trotter propagator.
fact reflects itself in a shorter correlation length between
sampled data, hence in statistically more accurate mean
ues. We propose to employ this propagator in simulat
weakly bound atomic and molecular clusters whose inte
tion potential is bound from below, since this case does
suffer for the possible population blow up that plagues
simulations on atomic and molecular electronic structure

As far as total simulation time is concerned, we found
gain in statistical efficiency obtained using longer time ste
with this propagator much larger than the additional com
tation time needed to calculate its more complex branch
factor. This feature should make theD propagator a compel
ling alternative to theT for the Monte Carlo practitioners
Moreover, the increased efficiency of the propagator can
exploited in the finite field method proposed by Sandl
Buck, and Clary@14#, to compute more accurate mean valu
of structural and energetic interest.
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APPENDIX A: THE CALCULATION OF †¹ iV„R…‡

2

Given a two-body approximation of the potentialV(R)
.( i j v(r i j ), wherer i j 5ur i2r j u, differentiating with respect
to r i one obtains

¹ iv~r i j !5
r i2r j

r i j

]v~r i j !

]r i j
. ~A1!

Its square is
n
s-

ta-
ts

e
e

-

r

y
ct

b-
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ot
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e
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s
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’

@¹ iv~r i j !#
25F]v~r i j !

]r i j
G2

. ~A2!

Since the two-body potentials are usually written as a s
of terms containing exponential functions and negative po
ers of r i j , the calculation of these derivatives only requir
that we reassemble quantities that were already compu
therefore reducing the additional cost almost to zero.

APPENDIX B: STATISTICAL ERROR OF THE MONTE
CARLO SIMULATION AND VARIANCE OF THE

ESTIMATOR

The statistical error of a MC simulation can be comput
by means of

s5Fvar@O~ t !#

Nind21 G1/2

, ~B1!

where Nind is the number of independent samples in t
simulation and var@O(t)# is the variance of the estimato
over the sampled distribution.

While Nind depends on the ability of the particular alg
rithm in decorrelating the walker population, var@O(t)# is
dependent only on the accuracy of the sampled distribut
i.e., the accuracy of the propagator, and of the trial wa
function. The time step dependency of this last quantity c
be computed for the harmonic oscillator similar to the w
used for the two energy estimators.

These variances are, for theT formula,

var@EH~ t !#5
2~4c221!2

@4c1~41t2!#2
, ~B2!

var@EV~ t !#5
2

41t2
. ~B3!

For the MM formula

var@EH~ t !#5
18~4c221!2

@12c1~3613t2!#2
, ~B4!

var@EV~ t !#5
6

41t2
. ~B5!

For theD formula

var@EH~ t !#5
18~121t2!~4c221!2

12c~121t2!1/21~432136t21t4!1/2
,

~B6!

var@EV~ t !#5
18~121t2!

432136t21t4
. ~B7!

For the IS algorithm

var@EH~ t !#5
2~4c221!2

@4c24c2t1~428ct1t2!1/2#2
. ~B8!
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It is interesting to note that, while for theT, MM, and D
formulas the variance is defined for allt, the IS estimator for
var@EH(t)# requestsc<t/811/(2t) for the square root in its
denominator to be defined for all the time steps. This f
means that forc.0.5, i.e., the value of the minimum o
t/811/(2t), there is always a time step beyond which th
estimator has no sense, and the simulation may show in
bility with respect to population blow up. The root cause
this effect has not yet been clearly identified, but a possibi
that we feel is worth investigating is represented by the
ferent effect the local energy can have on the branching
er

s.
t

ta-
f
y
-
c-

tor when c is varied. Specifically, whenc.0.5 the local
energy diverges toward2` for x→6`, while if c,0.5 it
diverges toward1`. Moreover, comparing numerically th
var@EH(t)# estimator for the different propagators it strike
us that the one of the IS algorithm assumes the highest va
therefore showing a minor efficiency with respect to oth
formulas.

Recently, a modified IS propagator, where the branch
factor was built to control the divergency of the local energ
has been proposed@16#. Unfortunately, we were not able t
solve the integral equation for this propagator, so a dir
comparison is not yet possible.
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