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Time step bias improvement in diffusion Monte Carlo simulations
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A Makri-Miller approximation to the exact propagator and the improved split-operator propagator proposed
by Drozdov are implemented within the diffusion Monte Carlo method for the simulation of boson systems,
and confronted with the Trotter formula and with the importance sampling technique. As a preliminary ap-
proach, we compute analytically the time step bias of the mean energy for the different propagators in the
simple case of the harmonic oscillator. These results indicate the improved split-operator propagator as the
most accurate. Simulations on one- and three-dimensional model systems confirm the analytical results show-
ing that this propagator is very efficient in reducing the time step bias, therefore improving the efficiency of the
algorithm.

PACS numbds): 02.70.Lq, 5.30.Jp

[. INTRODUCTION advantage of the IS procedure. Nevertheless, once one has an
optimized trial function, IS-DMC can be efficiently used to

The diffusion Monte CarldDMC) method is a useful tool compute the mean energies and properties using different
to study both ground and excited states of many body sysime steps in order to eliminate the time step bias. Moreover,
tems. At first, it was employed to solve the Sdafirger when the IS method is coupled with an accept-reject step
equation for electronic systems, i.e., to compute the elechased on the approximate trial wave function, the time step
tronic energy and structure of atoms and molecildsand  bias is usually reduced. Since this and related methods are
later to study the nuclear wave function of large atomic andwell described in the literature, we refer the reader to those
molecular aggregatg®]. Among the main advantages this publications for further detailg4].
method offers are the ability to easily cope, at least in prin-  Another indirect and less walked path to the reduction of
ciple, with any kind of interaction potential without the ne- the statistical error is given by the time step bias improve-
cessity to tailor the computer code, and the possibility toment that a more accurate propagator can prod&EeThis
avoid the basis set expansion. Moreover, the computationgbqyction of the time step bias has many advantages with
effort grows slowly with the increase of the dimensionality regnect to the simple IS: it allows us to use larger time steps,
of the problem unlike methods based on linear combination, e etore improving the statistical accuracy of the results or,

of basis functiong1]. alternatively, reducing the computational cost for the ex-

Although these features make the DMC method appear at?apolation. This is usually obtained because the improved
the method of choice for all problems where correlation be-

tween motions plays a fundamental role in describing Cor_propagator has a leading term in the error whose order in the

rectly the physics of a system, its use has been hindered tgr”e step .iS higher thgn the less accurate one, and a smaller
its statistical nature and by the necessity to reduce the stati€r€factor in this leading term. Furthermore, it does not re-
tical error to compute accurate energy differences. The mogUiré a trial wave function as IS does, freeing ourselves from
frequently employed approach to reduce the statistical errdf® burden to define complex and highly optimized trial
of the DMC results is the importance samplifi§) method ~ Wave functions to guide the simulation and to compute the
[3], where an approximate trial wave function is used tomean energy by the mixed estimator, since different estima-
guide the Monte Carlo sampling by means of a generalizedrs can be used. This can be advantageous when observables
Metropolis scheme based on Langevin dynanjiés Al- different from the energy are required. In this way one would
though this method has been found to reduce dramaticallpot introduce any prior information in the simulation, there-
the statistical error for equal number of sampled configurafore avoiding to bias the sampled distributidits.
tions when employed in simulating the electronic structure of In this work we follow this alternative to the IS technique
molecules, it requires more computational time for eacho reduce the time step bias, examining different propagators
simulation step and the selection and optimization of the triathat have been proposed and implementing them in DMC
function. This last step might become computationally moresimulations of model systems. The outline of this paper fol-
expensive than the DMC itself, therefore reducing the overallows. Section Il presents the analytical form of the propaga-
tors we compared in this work, and a summary of the ana-
Iytical results for their time step bias of the mean energy in

*Electronic address: Massimo.Mella@unimi.it the harmonic oscillator case. In Sec. Il we show the numeri-
"Electronic address: Gabriele.Morosi@unimi.it cal energy results for three model systems and report a dis-
*Electronic address: dario@fis.unico.it cussion of the relative efficiency of the propagators. Finally,
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Sec. IV contains our conclusions and proposal for future During the last few years, attention has been paid to the

work in this direction. issue of finding more accurate and more efficient STA's than
this function, in order to reduce the computational effort
Il METHOD needed for a given statistical accuracy. To tackle this prob-
lem two different approaches have been used: the first by
A. Theory of propagators in diffusion Monte Carlo Makri and Miller [8] and the second by Suzuk®], Chin

An imaginary-time version of the Schiinger equation [10], and Drozdo\{11].

serves as starting point to develop the theory of the DMC N the first approach, Makri and MilletMM) [8] ex-
methods. Specifically, this reads panded the logarithm of the coordinate representation of the

exact Green'’s function as a power serieg of the form
oW (R,1) V2
— => s P(RD-VRT(RY, (1)
' ' G(R—eRZt%=r3NQex%—¢_1:S t"Wy(R") |, (4)
n=0

whereV(R) is the interaction potential, arid is a point in
three-dimensional3D) space.

Although we leave the analytical form of the interaction where N is the total number of particles, and thé,(R")
potential undefined as a way to stress the ability of Montewere obtained exploiting the fact that the propagator is a
Carlo to cope with any local potential, we point out that thesolution of the imaginary-time Schdnger equation. If the
quality, accuracy, and stability of the method strongly de-power series is truncated to=2, one obtains the short-time
pend on the specific potential. For instance, although all thepproximation
propagators we tested can be employed to simulate Coulomb
systems, their simulations might become unstable due to

- . . o . i m |32 mi(r/ —r;)2
population blow up since this potential in atomic and mo GYM(R_R’ t)ZH (_I) XF{ Vi i }
lecular systems is not bound from below. Therefore, we sug- STA ’ 2t 2t
gest to intend our work as aimed to improve the efficiency of .
the DMC simulations f_or systems whose potential is bound xex;{ _tf dgV[R+§(R’—R)]}, (5)
from below (e.g., atomic clustejs 0

For the nodeless function case we consider in this work
(i.e., we restrict ourselves to particles obeying Bose’s statis- ) o
tics), the previous equation is formally equivalent to a classicvhereR=(ry, ... ry). This approximation has been shown
diffusion process with sink and source terms dependent of be more accurate than tfieone[Eq. (3)], but the presence

the position in space. Equatidf) can be recast in the inte- Of the integrals over the straight motion path of a configura-
gral form tion limits the possibility to use it to those forms of potentials

whose integrals are analytically solvable. One possible solu-
tion to this problem might be to fit the interaction potential
V(R t+ T):f dRG(R—R', 1))V (R,7), (2 by means of spline functions: since these are piece-wise
polynomial functions, all the requested integrals can be com-
puted analytically allowing the use of this approximation in
the simulations.
Comparing the MM form and formula, it appears that
e second can be derived from the first by means of a two
oint approximation to the integral &, specifically
J3déV[R+ £(R'—R)]=[V(R)+V(R’)]/2. This fact sug-
ests the idea that one might improve th@ropagator em-
loying more points in the integral in Eg¢5) or, alterna-
ively, a piecewise approximation of the potential by straight
lines. The accuracy of these approximations to &g could
be improved also by choosing better integration rules than
the one used above, e.g., Gaussian quadrature. Nevertheless,
it is important to keep in mind that the efficiency of the
m |32 M — ;)2 Eimul;aftion is an impprtant issut(aj: SO tr;]e use of a Ifargelr num;j
T r ey _ ! er of integration points can reduce the computational spee
Gsra(R=R ’t)_H (277'[) ex;{ 2t } of the codg. P P P
A different approach from the MM one has been pursued
&) by Suzuki[9], Chin[10], and Drozdo\11], employing the
split-operator techniques. They proposed various approxima-
tions of the exponential operater ', factorizing the kinetic
that is supposed to be accurate to a second ordei.@, for  energy and potential components of the Hamiltonian in dif-
short time steps the error is proportionatfo This is true for  ferent ways than Trotter. Among the proposed formulas, the
the harmonic oscillator, as we will show analytically below, one suggested by Drozdd®) [11] seems to be the easiest to
but it does not appear to be correct for a general potential.implement in a DMC simulation. This formula reads

where G(R—R’,t)=(R’|e"*H|R) is the imaginary time
Green’s function. If this function were known, Monte Carlo
methods could be used to estimate the above integral, ProR
jecting out all the excited state components from the startin%
wave functionW (R,0) [4].

Unfortunately, the exact Green’s function is known only
for very simple model Hamiltonians. For systems whoseJ
ground state wave function has no nodes, the theory of DM
relies completely on the ability to find an accurate approxi-
mation to the imaginary time Green’s function of the Sehro
dinger equation. The usual short time approximatisimA)
to this function is given by the Trottdl) formula[7]

4 V(R)+V(R')
Xex _tf
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V(R)+V(R") B. Theoretical results for the harmonic oscillator

6 The harmonic oscillator system is one of the favorite
3 playgrounds of chemists and physicists to test approximate
> f dRNH (ﬂ) methods before applying them to more complex models, or
i\t even real systems. In this work we analytically studied the
L s accuracy of the proposed propagators employing the har-
Xex;{ m(ry —r) monic oscillator as a test case. This choice is based on the
t observation made by Lee and LEE?] that the propagation
a2 " 5 of a GaussiaW (R,0)=e™ ax? by means of Eq(2) leaves its
(ﬂ) F{mi(ri —n) } (6) analytical form unchanged, and only modifies the width
’ a way that depends on the time stegsed. This fact allows
us to get a better understanding of the features of every

exd —tV(R")]

X
Tt t

where propagator, especially of the one used by Drozphl] that
represents the most promising one. Exploiting the mentioned
~ 2V(R) t? [ViV(R)]? result, one can solve the eigenvalue equation
VR==3 " 54 m @
[ i

\If(R’,t)ze*f dR Ggra(R—R’, 1)V (R,0), (9)
This factorization of the evolution operator was already

shown to be an improvement with respect to the standard \yhere the parameteis the time step used, the eigenvalue,

formula at least in path-integral simulatiofs1], where it ang the exact Green’s function has been substituted by one
allowed one to use longer time steps still giving an accuratgy its short time approximations. The ground state solution of
representation of the propagate.d wave function. I—_|owever, ||t£q. (9) of the form‘P(x)ze*“(‘)Xz can be used to compute
has.never peen tested d'|rectly in a DMC calculation, so WSarious guantitiege.g., the mean energy and potential esti-
dec_|ded to implement this propagator to compute mean enl’hatOI) whose values will also depend onTherefore, from
ergies af?d other observables in ord_er to test its performanc%ese results one is able to judge the accuracy of the different
As pointed out by Droz_doﬂl], d|ffe_rently from T and. approximations, i.e., the time step bias, varying the time step
MM formulas, theD approximation requires the computation in the simulation
:{mal:]a:g;er]gtcilisozzg tl?ee ég;eilrmfzer?;z ga;ﬁg ' ;nGtgiszil\;r?sa _ Before presenting our analytical results for the harmonic
. - y ” yab: . Mscillator with unitary mass and force constant, it is relevant
pling of the displacement froR to R”, therefore it requires

) . . tQ point out that the energy mean values were calculated
a double number of normal Gaussian variates. Since the mo P 9y

expensive step in the DMC calculation, when no trial Wave8 ploying both the mixed estimatft3]

function is used, is the evaluation of the potential energy,

this additional request does not spoil the efficiency of the J \IfO(R)He*CXZdR
algorithm. Instead, care must be used in programming the (Ex(t))= (10
calculation of the gradient of the potential, since this step qu (R)e‘CXZdR
could become quite expensive. In Appendix A we show that 0
for a two-body potentiaV/(r;;) this additional step does not ] ]
introduce any significant cost in the simulation. and the mean potential estimafdr
As the last propagator formula, we report the one em-
ployed in the standard 1S-DMC algorithm that re4d$ J' ¥, (R)V(R)dR
Ev(t)= 11
GlS R—>R,,t < \
sTAl ) f V,(R)dR
_ m %2 Imilr{ —ri—tF(R)/(2m)]?
S Ht\2at ex 2t and that these quantities converge to the ground state energy

(8) parameter i. Although the mean potential estimator was
the first estimator of the energy used in DMC calculations, it
is no longer employed in simulating Coulomb systems due to

whereE,.=HWV . /V,, andF;=VW¥,/V,. Differently from its larger variance with respect to the mixed estimator. This

the previous formulas, that in the long time regime sample d@s due to the fact that the mixed estimator has the nice prop-
distribution proportional to the ground state wave functionerty that it gives the exact energy, independently of the time

V¥, the IS propagator samples the distributienV,W,. As  step used, when the trial wave function is the exact one. This

already pointed out in the Introduction, this formula is usu-property is reflected in the well-known reduction of the sta-

ally coupled to an accept or reject step based on the genetistical error of the simulation when the difference between
alized Metropolis acceptance matrix. Before we show thehe trial wave function and the exact one decreases. Never-
results obtained by the above propagators in real DMC simutheless, the potential estimator is widely employed to com-

lations, in the next paragraph we present some analyticglute mean energies for atomic and molecular clusters when a

results for a simple model system: the harmonic oscillator. trial wave function is not at hand. 4], so we feel it is worth

;{ Eloc( R) + Eloc( R,)
xXexpg —t

for t—0. In Eq.(10) e~ ¢ is the trial function, whose width
]
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studying its time step bias as well as the one of the mixed —1+4c3t—c(4—8ct+t2)R c
estimator. Another interesting quantity that we were able to(E(t))= > 5 1/221/2+ ——cz>t,
compute is the variance of these estimators, {E(t)?) —4c+4ct—(4—8ct+t) 2
—(E(t))?, that is directly related to the algorithm efficiency. (18

To avoid to burden this theoretical presentation we report th
variance for the different propagators in Appendix B.
Using T[Eg. (3)], one obtains

fuherec is the width of the Gaussian used to guide the simu-
lation and to compute the mean energy. The error of the
mixed estimator for IS-DMC has a linear dependence on the
o 12 time step, a much worse result than the previous propagators.
(En(t)) = 1+c(4+t%) —1/24 2c—1 {2 (1  Unfortunately, we were not able to obtain the same quantity
. 4c+(4+12)1? 16(1+2c) ' for the IS algorithm coupled to the accept or reject step.
A different method to introduce the importance sampling
2 in the DMC simulations was developed by Ka[d$], and it
(13) is based on a simple reweighting scheme of the branching
factor. Specifically, the branching factor of the propagator is
multiplied by ¥(R")/¥(R), whereR’ andR are, respec-
where, fort—0, both quantities converge towards the exacttively, the final and initial positions of a walker in a Monte
value 1/2. It is interesting to note that for small time stepsCarlo step. This approach can be easily employed for any
these two mean values are accurate to second ordet.én,  analytical propagator once one has a suitable trial wave func-
the error is proportional tt?. This fact contradicts the find- tion to guide the simulation. Using an analytical approach
ings of Makri and Miller[8], at least for this model system. similar to the one explained above, we were able to obtain
As far as the MM[8] approximation[Eq. (5)] is con- the time step dependence of the mixed estim&gft) for

(Ev(t)= G V2= 76

cerned, our analytical results are the T, MM, and D formulas when employed with this IS
procedure. It was surprising to see that these results do not
3+ ¢(36+ 3t2) 12 2c—1 differ from the ones obtained without the IS procedures for
(Enx(t))= = t2, all the propagators: this way to carry out the IS procedure
12c+(36+3t?)12 48(1+2c) does not modify either the order of the algorithm or its pref-
(14 actor.
(3)1/2 t2
<EV(1‘)>= _ (15) IIl. MONTE CARLO RESULTS AND DISCUSSION

(1zrrye Ve ag . o . |
The aim of this section is to report and discuss the time

step bias and the efficiency of the propagators presented

with better prefactor for MM. Since the MM approach doesabove when applied to the simulation of low dimensional

not appear 10 be easy to implement for a general ciass IAOE BRI, 2 N S IR S e DS
potentials and does not introduce a large improvement in th@

time step bias, we decided to avoid to carry out more tests o e employed in our analypcal cglculan_ons. This chqce al-
it ows us to compare our simulations with the analytical re-

With regard to the D formula, we obtained sults d|_rectly, in order to test the correctness of the |rr_1ple-
mentation of all the algorithms. In all the numerical

simulations we employed a target population of 500 walkers,

and a Gaussian trial wave function with width parameter

Both T and MM formulas are correct to second ordet,ibut

3(12+t%)Y2+ c(432+ 362+ t4) 12

(En(t))=

12c(12+t%)Y2+ (432+ 3612+ t4) 12 =0.801 to compute the mean energy. Instead of reporting

long tables with the numerical results of our calculations, in

~1/2+ 2c-1 4 (16) Fig. 1 we show the DMC mean potential estimdteq. (11)]

17281+2c) '’ for the T and D formulas, together with the corresponding

analytical solutions. Since for the IS algorithm with the ac-
3(12+2)12 t4 cept or rejept step the potential estimatc_)r is no Ionggr a valid

(Ey(t))= ~1/2— , (17 energy estimator, we do not compare its results withhe
(432+36t%+14) 12 1728 andT ones.

From Fig. 1 one can note that tileapproximation to the
where both the energy estimators are dependent on the fouréixact propagator gives much better results, in terms of the
power of the time step. Moreover, the coefficientstbire  time step bias, than the standard Trotter formula as expected
two orders of magnitude smaller than ttfecoefficients for ~ from the analytical results. Moreover, the numerical values
the other approximations: this formula could give more ac-appear in complete agreement with the equations presented
curate results, using the same time step, than the previous the previous section. More specifically, the potential re-
approximations. sults obtained using thB formula are in statistical agree-

Since the 1S-DMC method samples the distributibn ment with the exact value of 0.5 Hartree already tat
=¥, ¥, instead of¥,, the mean potential estimator is no =0.95 Hartree®. A similar behavior was found for the
longer valid to compute the mean energy during the simulamixed estimator as shown in Fig. 2. This estimator allows a
tion. For the IS propagator, where no accept or reject step ismore fair comparison of the time step bias of the algorithms,
employed, the mixed estimator gives the result as also IS results can be confronted withand D values.



2054 MASSIMO MELLA, GABRIELE MOROSI, AND DARIO BRESSANINI PRE 61
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FIG. 1. Time step dependence of the mean potential estimator of FIG. 3. Time step dependence of the mean potential estimator of
the energyE,(t) for the harmonic oscillator. The symbols representthe energyE,(t) for the double well potential. The symbols repre-
the results of DMC simulations, while the lines are the analyticalsent the results of DMC simulations, while the line is the exact

results shown in the text. energy.

From Fig. 2 it can be seen that the IS algorithm is less acyseq the sum of two Gaussians centered on the potential
curate tha_n the T_rotter_formula even if accept or reject iSpinima X,=*+2 and whose width parameter was-1.41.
employed in the simulation. The results of heformula for  The mean potential results for this system are shown in Fig.
the ml_xed estimator show a large improvement in the times together with the exact energy. From the plot, it appears
step bias with respect to the standdréormula. clearly that theD propagator is quite more accurate than the
As a second example, we tested the three propagators gn one, showing practically no time step bias up to
a unitary mass particle confined in the one-dimensionaf) 5 Hartree?. As far as the mixed estimator is concerned,
double-well potential we show in Fig. 4 the numerical results of our simulations.
Again, as noted previously for the harmonic oscillator, both
T and D formulas appear much more accurate than the IS
algorithm, whose simulations become unstable for time steps
larger than 0.04 Hartreé.
a prototypical system widely employed to model the tunnel  As a last test on time step bias of the mixed energy esti-
effect. This model system, whose exact ground state energvator for the three propagators, we simulated the ground
is —2.6614 Hartre¢15], was used by Drozdov to test e state of a unitary mass particle in a 3D potential
formula in path integral calculatiorig1]. All the simulations
on this model system were carried out using the same target

X4
V(x)= i 2%2, (19)

V2f(x,y,z) b?

population as for the harmonic oscillator case, i.e., 500 walk- V(X,y,2)= ——tatp (20)
ers. As a trial wave function to compute the mean energy we b 2f(x,y,z) 2B '
0.530 T T T T T T T -2.654 Ty T ——rTrr
. - ® =
0.525 g + 2656 F T o % % i
IS D +
0.520 EQ. 12 -~ s - IS H8—
_ Eq. 16 - 2658 % -
g os515f . 3
s e £ 2660 -
= 0510 | i £
2 e Ry Ll SRl EERTE T
a 2662 - % P
0.505 |- s - o
0.500 Bz g R ] -2.664 4
0495 1 1 1 1 1 1 1 -2666 MRt | T | MR | L
00 02 04 06 08 10 12 14 0.00 0.001 0.010 0.100 1.000
t (1/hartree) t (1/hartree)

FIG. 2. Time step dependence of the mixed estimator of the FIG. 4. Time step dependence of the mixed estimator of the
energyE(t) for the harmonic oscillator. The symbols represent theenergyEy(t) for the double well potential. The symbols represent
results of DMC simulations, while the lines are the analytical re-the results of DMC simulations, while the line is the exact energy.
sults shown in the text. Note the logarithmic scale on the time step axis.
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FIG. 5. Time step dependence of the mixed estimator of the FIG. 6. Time step dependence of the standard deviation of the

energyEy(t) for the 3D model potential. The symbols represent the_rlt‘k']Xed es;"?ator of thet tehner@Hl(tt) f?:atl\r/]lecsp n:o?el potential.
results of DMC simulations, while the line is the exact energy. € Symbols represent the results o simuiations.

ing the simulation. This fact leads to a dramatic decrease of

e =By’ the statistical error of the results, due to a faster decorrelation
f(z,y,2)= 3 -t (21 of the configurations between two successive steps. This, in
e °" +Be turn, allows one to reduce the length of the simulations or to

obtain more accurate results for the constant simulation

where f(x,y,z) is the ground state wave function, aigd  length.
=—b?%/2B+a+ g is its energy. In our simulations we as-  To discuss the relative efficiency of the propagators, we
sumeda=0.3, 3=0.2,a=0.7,b=1.2, andB=3.0: the ex-  show in Fig. 6 the standard deviation of the mixed estimator
act energy of this system 5,=0.26 Hartree. of the energy, obtained from the simulations on the 3D

As pointed out in the Introduction, to carry out the simu- model potential presented above, versus the time step used.
lations for systems of physical interest and more complell the simulations were carried out employing 3000 walk-
than the monodimensional models we have presented so fagrs, 200 blocks of 500 steps each, so that the statistical error
the 1IS-DMC method is frequently used. For this reason, ands a direct mesure of the efficiency. The statistical error of the
for having a fair comparison between the efficiency of The D propagator is similar to the one @fin the time step range
andD propagators with the 1IS-DMC algorithm, we decided 0—0.5 Hartreg!; for larger time steps it increases slightly
to run all the simulations on our 3D model using the re-with respect tol. We attribute this feature to the presence in
weighting scheme proposed by Kalfis3] to introduce the the branching factor of a term depending tSrthat starts to
importance sampling. As trial wave function to guide theplay an increasing role far=0.5 Hartree®.
simulations we used(z,y,z) employing slightly different The T and D propagators appears to be much more effi-
parameter values than the exact ones. The mean local energient than the IS-DMC algorithm for all the studied time
results of these simulations, where we employed 3000 walksteps, showing a statistical error smaller by a factor of 2—4.
ers, are shown in Fig. 5 together with tkg energy. We feel this trait is due to the different branching factor in

As far as theD and T propagators are concerned, oncethe propagators, since, using the same time step, the diffu-
again the results show th# formula to give more accurate sion factor of the 1S-DMC algorithm generates larger ac-
results than th& one. Comparing the mean energy results ofcepted displacements than the other propagators. The gain in
these two propagators with the values obtained employinthe overall efficiency of the simulations can be easily under-
the standard IS-DMC method, one can notice that for thistood recalling that the standard deviation of the results is
system the last method gives even less accurate results thproportional to N;,g) ~ Y whereN;,4 is the number of sta-
the simpleT propagator. Moreover, we were not able to carrytistically decorrelated samples obtained during a simulation.
out simulations using a time step larger than 0.4 Harttee This means that a decrease of a factor of 2 in the standard
for the IS-DMC method due to systematic explosions of thedeviation represents an increase of a factor of Mijp, or a
walker population. We attribute this to an instability of the decrease of a factor of 4 in the computational time for the
branching factor based on the local energy of the trial wav&ame statistical accuracy.
function. This shows a strong divergency to large negative In comparing more accurately the efficiency of fhend
values forz— * o for all the parameter values we tried. The D propagators, one should keep in mind that a step obthe
D and T propagators are not affected by this feature sincgpropagator is slightly more expensive than a step ofThe
their branching factor is dependent only on the potential enpropagator. This is due to the necessity of a double number
ergy and its gradient. Since these quantities are bound fromf random variates to produce the diffusion displacement,
below they cannot produce a population explosion as in thand of three calculations of the potential energy and one of
local energy case. its gradient instead of only two potential evaluations. There-

As already pointed out in the Introduction, more accuratefore, the singleD propagator step is roughly one and one-
propagators give the possibility to use larger time steps durkalf times more expensive, since the generation of the ran-
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dom variates is usually two orders of magnitude faster than 2

the calculation of the potential energy. Nevertheless, the pos- [Viv(ri)]*=
sibility of using time steps in th® propagator larger by a

factor of 2-3 than in thel propagator obtaining the same  gjnce the two-body potentials are usually written as a sum
time step bias more than supersedes the additional computgf terms containing exponential functions and negative pow-
tional cost request by this algorithm, and makes attractive itgrs ofr;; , the calculation of these derivatives only requires
use for more complex systems. For instance, the same timgat we reassemble quantities that were already computed,

step error, namely, 0.001 Hartree, is obtained using a timenerefore reducing the additional cost almost to zero.
step of 0.05 Hartree' with T and of 0.30 Hartree! with D

(see Fig. 5. This fact reflects itself in a standard deviation
for the D result that is 2.5 times smaller than the same quan-
tity for T, therefore allowing to reduce the simulation length

av(rij)

. (A2)

ij

APPENDIX B: STATISTICAL ERROR OF THE MONTE
CARLO SIMULATION AND VARIANCE OF THE

. S ESTIMATOR
by a factor of 6. These conclusions remain similar even for
the harmonic oscillator and for the double well potential. The statistical error of a MC simulation can be computed
by means of
IV. CONCLUSIONS vafO(t)] 1/2
. . o=|——1| (B1)
The main goal of this work was to compare the accuracy Nijng— 1

and the efficiency of two proposed propagators with respect

to the Trotter formula commonly used in DMC simulation of Where Njqq is the number of independent samples in the
atomic and molecular aggregates. From the results we otgimulation and vaiO(t)] is the variance of the estimator
tained, it appears that the propagator based on the fourver the sampled distribution.

order symmetric splitting proposed by Chif0], and ex- While Njyq depends on the ability of the particular algo-
ploited by Drozdo\[11] in path integral calculations, allows rithm in decorrelating the walker population, yaxq(t)] is

one to use a larger time step than the Trotter propagator. Thigependent only on the accuracy of the sampled distribution,
fact reflects itself in a shorter correlation length between thé.€., the accuracy of the propagator, and of the trial wave
sampled data, hence in statistically more accurate mean vaknction. The time step dependency of this last quantity can
ues. We propose to employ this propagator in simulatindDG computed for the harmonic oscillator similar to the way
weakly bound atomic and molecular clusters whose interacdsed for the two energy estimators.

tion potential is bound from below, since this case does not These variances are, for tieformula,

suffer for the possible population blow up that plagues the

simulations on atomic and molecular electronic structures. 2(4c*~1)?
As far as total simulation time is concerned, we found the valEx(t)]= [4c+(4+12)]2 (B2)
gain in statistical efficiency obtained using longer time steps
with this propagator much larger than the additional compu-
tation time needed to calculate its more complex branching vafEy(t)]= - (B3)
factor. This feature should make tBepropagator a compel- 4+t
ling alternative to theT for the Monte Carlo practitioners.
Moreover, the increased efficiency of the propagator can b&or the MM formula
exploited in the finite field method proposed by Sandler,
Buck, and Clanj|14], to compute more accurate mean values _ 18(4c*~1)?
of structural and energetic interest. vafEx(t)]= [12c+ (36+3t2)]2’ (B4)
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valEx()]= 2,112 2., 4172’
APPENDIX A: THE CALCULATION OF [V,V(R)]? 12c(12+1%) 7+ (432+ 3617+ %) =6
Given a two-body approximation of the potentM(R)
=3v(r;j), wherer;;=|r;—r|, differentiating with respect 18(12+t?)
to r; one obtains valEy(t)]= 132 362t (B7)
ri—ri ov(r;) For the IS algorithm
ViV(rij): Ir” ]T”” (Al)
’ ’ 2(4c2—1)?
vafEy(t)]= . (B8)

Its square is [4c—4c?t+ (4—8ct+12)?)2
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It is interesting to note that, while for thE MM, andD  tor whenc is varied. Specifically, wherc>0.5 the local
formulas the variance is defined for slthe IS estimator for ~energy diverges toware  for x— * o, while if c<0.5 it
vaf Ey(t)] requeste<t/8+ 1/(2t) for the square root in its diverges toward+ . Moreover, comparing numerically the

denominator to be defined for all the time steps. This facValEn(t)] estimator for the different propagators it strikes
means that foc>05 ie. the value of the minimum of YS that the one of the IS algorithm assumes the highest value,

t/8+ 1/(2t), there is always a time step beyond which this}gﬁﬁjgs showing a minor efficiency with respect to other
estimator has no sense, and the simulation may show insta- Recently, a modified IS propagator, where the branching
bility with respect to population blow up. The root cause offactor was built to control the divergency of the local energy,
this effect has not yet been CIearIy identified, but a pOSSibi"tynas been proposq:d_G]_ Un'fo|"[u|’|g';1'[e|y7 we were not able to
that we feel is worth investigating is represented by the difsolve the integral equation for this propagator, so a direct
ferent effect the local energy can have on the branching facsomparison is not yet possible.
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